Tag Archives: Display

Video Triptych

Building a synced video tryptic with Raspberry Pies and laptop screens

A filmmaker friend, Natasha Maidoff, approached me to design a display device that would allow her to display a video triptych at the 2015 Venice Art Walk. The idea was to create a frame that would contain all the components necessary to play three different videos on three separate screens in perfect sync. It should be simple and should not need to be connected to a bunch of cables or computers. The goal was to hang it, plug it, turn it on and forget it… Oh, and did I mention it should not cost an arm and a leg?
Based on my previous tinkering activities, I felt that this project was within my reach and so I started researching parts. My first order was for 3 Raspberry Pi 2 mini computers, 3 replacement laptop LCD screens and the 3 driver boards they needed to be connected to the Pi’s HDMI output. Along with that, I got the various necessary AC adapters to power all this mess.

Framing and mounting the electronics

The first order of business was to create an aluminum frame to mount the screens to. I got some standard aluminum rods from home depot and cut them to size. I drilled some small holes in the vertical aluminum studs and mounted the screens by using the small screw holes along their edges that are designed for them to be mounted in the laptop. Next, I cut two horizontal struts that I screwed the vertical studs to and ended up with a nice sturdy frame that the screens were securely mounted to. For the top strut, I used an angle piece, and for the bottom strut, I used a plat piece that was wide enough to mount the electronics. A few holes, and 18 small bolts, nuts and screws later later, the electronics were on! I plugged everything in and it all lit up just fine…

Networking the three Raspberry Pi

The next order of business was figuring out how to get the machines to talk to each other. The raspberry Pi comes with a set of GPIO pins that I could have wired to send signals back and forth between the machines, but it would have required a fair amount of coding and wiring to get the control I needed. Also, since I quickly realized I would need ethernet to log in and customize the raspbian operating system on each individual machine, I decided to piggy back on this and use OSC for communication over TCP/IP. I got a small USB hub, pried open the cheap plastic case, liberated the small electronic circuit housed therein and proceeded to mount it to the frame itself. I connected ethernet cables between the hub and the three machines, and also connected the hub to my home router which allowed me to connect to and set up the Raspberry Pies from my laptop.
For this to work reliably and predictably, I changed the Pies’ IP address to be static, and while I was there, I changed the hostnames, and set it up to automatically log in to the command line without loading the desktop interface.
To set up the static IP to, edit /etc/network/interfaces and replace:
iface wlan0 inet dhcp

iface wlan0 inet static

To setup the hostname, replace it to your desired name in /etc/hostname, and also list all the other hostnames with their static IPs in /etc/hosts.
Lastly, to log directly into the command line interface without having to enter a username and password, edit the file /etc/inittab and replace the line:
1:2345:respawn:/sbin/getty 115200 tty1
1:2345:respawn:/bin/login -f pi tty1 /dev/tty1 2>&1

Getting rid of warts

All this electronickery runs on 12V and 5V DC, and typically, you use one of these a lovely black boxy power adapter for each component. At this point in the build, I had everything working but I was relying on 7 of these wall warts plugged into a power strip to get it all powered. I didn’t have room on the frame itself to mount all this crap and I didn’t want 7 wires coming out of it so I started looking into a better way to supply power. The monitors needed 12V and each seemed to be running along fine with a 2A supply. The Raspberry Pies and the ethernet hub each used 5V and 1A each at most. I searched on ebay and found 12V power supplies usually used for home LED lighting, and figured that getting one rated for 10 amps would be more than enough to cover the requirements of the frame. I also got a step down converter for the pieces that required 5V.
Wire time… AC power cord into 12V power supply, 3 sets of wires with DC power barrel jacks connecting the 12V output to each of the monitors, 1 set of wires connecting to the 12V to 5V step down converter. 5V output of the down converter to the raspberry pies and the ethernet hub. One of the challenges here was trying to solder wire to the micro USB plugs I had bought. It’s all way too small and I ended up with an ugly heap, kind f like Jeff Goldblum and the fly in “The Fly”, except with melted lead and plastic. In the end, I just bought some USB cables with the proper connection, cut them and rewired them to fit my needs.

The software

Auto start

I needed the movies to start automatically when the machines were done booting, so I modified the /home/pi/.bashrc file to run my main script whenever it was being accessed at the end of a boot sequence (I didn’t want to launch my movie playback script every time I logged in from another machine). I look for the $L1 environment variable that gets to “tty1” only when logging to the console from the boot sequence. I added the following at the top of .bashrc:

if [ “$L1” == “tty1” ] then
sudo /home/pi/video_player.py
Movie playback

For movie playback, I made the obvious choice and used omxplayer which is custom written for the Raspberry Pi hardware and can play full 30fps HD video from the GPU, and there’s even a crude little library called pyomxplayer that allows control from python. In order to get the pyomxplayer library to run, I had to install the pexpect python library which allows it script to spawn and control the omxplayer process. Also, pyomxplayer tries to parse the text output by omxplayer but it seems like that part of the code has changed and causes the script to fail and exit so I had to remove that part of the code. I also added a function to allow me to rewind the movie. As soon as my script starts, omxplayer loads the appropriate movie file and pauses at the beginning.

Syncing the movies

As for syncing the start of the three movies, I used pyOSC to have the machines automatically establish a connection when they boot up and unpause the movies at the same instant when all three machines are ready. The basic process goes like this: I designate one machine to be the master and the two others to be slaves. When the master boots up, it first listens for a signal from each the slaves, and stays in this mode until it has heard from both. On their end, the slaves’ first action during launch is to send a signal to the master. As soon as the master has heard from both slaves, it tells the slaves to switch to a state where they listen to the master for commands. At this point, the master unpauses the movie it previously loaded and tells the slaves to do the same with theirs. Since omxplayer has no looping function I could find that worked for me, I have the master wait for the length of the movie and then rewind to movies to the beginning and start them playing over again.

Playing back from the RAM disk

In order to avoid continually reading from the SD card, I created a ram disk so my script could copy the movie file to it and allow omxplayer to play back from there.
I created the directory for the ram disk’s mount point:
sudo mkdir /var/ramdisk
and added the following to the /etc/fstab file:
ramdisk /var/ramdisk tmpfs nodev,nosuid,size=500M 0 0
The Raspberry Pi 2 comes with 1 GB of ram so I used half of it for the drive, which left plenty for the OS to run.

Timing issues

Fundamentally, pyomxplayer and the pexpect approach it uses is an ingenious but somewhat hacky way to control the process and it took me a long time to get everything to work properly. I found that if my script sent commands to omxplayer too fast, omxplayer would miss the command. I had to put a bunch of sleep statements in my code to pause and allow enough time for commands to get properly “heard” by the omxplayer process. Also, I added a long pause right after the movie is first loaded into omxplayer to make sure any residual and proc intensive boot process has a chance to finish and does not interfere with the responsiveness of each machine. It’s far from a robust setup; It’s basically a script that tells three machines to press the “play” button at the same time. Ultimately, though, I seemed to be able to get the movies to sync well enough across all three machines. Not guaranteed to be frame perfect every time but probably within one or two frames on a reliable basis. Ultimately, I would love for someone to write a true python API for omxplayer.

Powering off and rebooting through GPIO

Since the frame will be fully autonomous, it will not have a keyboard to allow an operator to properly power off the Raspberry Pies. This is a challenge because if you directly unplug the power to turn them off, the SD card will most likely get corrupted and you will not be able to reboot the machine. So, I needed to setup a simple way to cleanly shutdown the machines before turning the power off. I also wanted to be able to reboot if somehow something unexpected happened that threw the machine out of sync. So, I connected the master machine to a couple of switches and set the script up to power off or reboot if the GPIO interface detects a specific button press.

The code

Here is the code. You will need to install pyomxplayer, pexpect, and pyOSC. Also, depending on your version of omxplayer, you may need to modify pyomxplayer because of the way it attempts to parse omxplayer’s output. This script works for both the master and the slave based on the hostname. Here is the basic process:

When all machines boot up, they copy the relevant media to the ram drive, and launch it in omxplayer in a paused state
The slaves then go into a startup loop sending a “ready” address to the master until they hear back.
The master goes into a loop to check if both slaves are ready, listening for a “ready” address from each.
When the master determines that both slaves are ready, it sends a “listen” address to the slaves and the slaves come out of their startup loop.
From here on out, the master controls the slaves through OSC to unpause/pause/rewind the movies indefinitely.
The machines either reboot or shut down when the specific GPIO pin gets set on the master.


Pretty quickly in the process, I realized that with the amount of work I had on my plate, as well as my day job, I would not have the time to build a frame that would do justice to the project. Natasha brought in Hugo Garcia to help. We went back and forth between modern designs that would let you see through to the electronics and the more traditional framing approach we ended up settling on. Since the screens and computers were all mounted to the central aluminum structure, the process was not too difficult; it was just a matter of hanging a skin on it. Hugo came up with a cool Arts and Craft inspired box frame and an ingenious setup of brackets that sandwiched the electronics in place. The most sensitive part was getting precise measurements of the screens to make sure the CNC’d matte fit perfectly on the screens.
The last few details consisted of mounting the tactile switches connected to the GPIO pins for shutting down or rebooting the machines, soldering on a mini jack connected to the master Raspberry Pi and provide audio from the outside, and lastly, installing a main power switch for the whole unit.


Here it is… We’re very happy! The work looks great. After seeing Natasha’s piece running on it in perfect sync, we’re all very inspired to work with this tryptic format. There are so many ideas to explore. Since we’re hoping for this to sell at the auction for the Venice Family Clinic, we’re already planning to build another one for us to play with.

Parts list

In case you are foolish enough to go down the same route I did, here’s what I used:
3 raspberry pi 2
3 LTN156AT02-D02 Samsung 15.6″ WXGA replacement screens (ebay)
3 HDMI+DVI+VGA+Audio Controller Board Driver Kit for LTN156AT02 (ebay)
1 D-Link – 5-Port 10/100 Mbps Fast Ethernet Switch
DC 12V 10A Regulated Transformer Power Supply (typically used for LED strips)
DC-DC 12V/ 24V to 5V 10A Converter Step Down Regulator Module
Aluminum, mini usb cables, 3 ethernet cables, 3 ethernet cables, nuts and bolts, tactile switch, power switch, wire…

From broken laptop to cool utility monitor

Broken things are solutions looking for problems. They hold magic undiscovered potential. I hate throwing away broken things because I’m never sure I won’t be able to later re-purpose some part of them into something else. On a seemingly unrelated note, I’m often in need of plugging some random computer or video device in to a screen for testing and, up until now, I have had to swap cables on my desktop monitors or pull out some bulky crappy old monitor from the garage and find some temporary place for it while I use it. What I really want is a small lightweight monitor I can easily access and occasionally plug a Raspberry Pi or my linux server into, something that’s closer in size to a laptop screen than a big bulky desktop monitor and that will not take up desk space.

Cue in broken hardware

As luck would have it, my stupid cat likes to sleep on laptops. They provide a nice warm place and a soothing fan sound. Usually, the only repercussion of this fact is that I sometimes wake up in the morning with hair on the keyboard and the Google helpfully informing me that
In one particular instance however, I was using a hackintoshed Asus 1201N that was clearly not designed to support the weight of a house cat; I know because it never woke up from its night of feline suffocation. I took it apart to see what I could find but never did find the needle in that haystack; probably a shorted motherboard… In the closet of broken stuff it went.

A killer and his victim


I’m always thinking about creating different displays. I’m pretty bored with the standard monitor design and I’m always interested in challenges to the rectangle-in-a-sleek-shiny-enclosure status-quo which led me to learn that I could probably find hardware compatible with my broken laptop’s LCD panel. I took the laptop apart, got the part number of the LCD panel and eventually found the right board on ebay for about $30 (I searched for “HSD121PHW1 controller”, HSD121PHW1 being the panel’s model number). Two weeks later, the padded envelope with the telltale Chinese characters on it showed up in my mail mailbox and I immediately plugged it in to test it. Lo and behold, it worked!

From parts to a thing

Okay, so now, I actually have the parts I need to make that small monitor I’ve been wanting: a small LCD panel and a driver board I can plug any HDMI or DVI display into. The next step is putting it together in a cool, cheap and convenient way. I had been peripherally interested by Plexiglas for another project so I decided to try it as a mounting surface for this. I measured the width of the screen and driver board, as well as the height of the screen with and without the adjustment buttons, and got a couple pieces cut at my local plastic store (Santa Monica Plastics). I drilled some holes, mounted the various parts on the back using standoffs, and sandwiched them by screwing in the smaller piece of plexi in the front using longer standoffs.

Self Illuminating Responsive Tintype Frame

The area of a tintype image that gets exposed to the most light essentially becomes a pure silver coating. While the reflective properties of silver make the final image a bit darker than traditional photographic prints, it also gives it a really compelling silvery metallic reflective feel. As a way to highlight those unique qualities, I decided to experiment with hiding LEDs in a box frame to illuminate the image from inside. I also wanted to find a way to intensify the lighting and make the image come alive as viewers got close to it.


I inherited some antique oak wood floor pieces and made quick work of it on the old chop saw.

I built some walls behind the front of the frame and attached some LED string lights on it.
I mounted an 8×10 tintype on a black backing board cut to fit at the bottom of the frame’s walls.
Lights OFF / Lights ON


The next step was to figure out the kind of sensor needed to make the lights come on as a viewer approached the frame. I figured the sensor required would need a range of at least a few meters and be able to return the specific distance to the closest obstructing object. I am not a distance sensor expert so I used the internet to help. In the end, I settled for a Maxsonar EZ0 LV. It’s cheap, it’s got a range of a few meters and it’s got both serial, analog and PWM outputs. I hooked it up to a teensy board and confirmed the sensor was returning appropriate distance values. On the lighting front, I was planning on controlling the brightness of the LED string with the teensy, but since the LED string requires a 12V supply and the teensy outputs only 5V, I used a MOSFET driven by the teensy’s output to modulate the LED’s power supply.

The electronically savvy amongst you will notice that I’m currently using 2 power plugs: a 12V one for the LED and a 5V USB supply for the teensy, which is stupid. I tried to use a voltage regulator to convert the 12V to a 5V supply but somehow it created much noisier reading on the distance sensor… I must have missed a capacitor somewhere. I will try using an Arduino Nano which can take a 12V supply directly.


God, I love the internet!!! I read somewhere that the sensor’s PWM signal was much cleaner so I started with that but I eventually found out that it also is much much slower and wasn’t able to keep up with the rate of change I was looking for. In the end, I used the analog signal and tried to filter it as best I could.

Next Steps

Once I get my paws on that Arduino Nano board, I can rework my circuit and get the soldering iron out to make my electronics more permanent. I have also ordered a HC-SR04 Distance Sensor to see how it compares to the Maxsonar in terms of accuracy, speed and noise. Also, I need to make the frame a little bit deeper so the light can spread out a bit further across the image.

Which one is cooler?

The ominous cyclopean look or the cute and friendly Wall-E look?